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A B S T R A C T

Snow albedo is a key geophysical parameter that controls the energy exchanges between the atmosphere and
Earth’s surfaces and has been widely utilized in climatic and environmental change studies. However, recent
studies have demonstrated that current albedo satellite products still have large uncertainties in snow-covered
areas. In this study, we estimated the blue-sky shortwave albedo of snow surfaces using the eXtreme Gradient
Boosting (XGBoost) algorithm with Moderate Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere
(TOA) reflectance values, ERA-5 land reanalysis snow parameters (e.g., snow cover, snow density and snow
depth water equivalent) and in situ measurements. In the XGBoost model, the MODIS MCD43 albedo values were
input as prior knowledge, and the random sample validation results showed that the R2 and root mean square
error (RMSE) values of this model were approximately 0.953 and 0.044, respectively. The typical sites for in-
dependent validation were subjected to in situ measurements at the UPE_L, AWS5, and CA_ARB sites. Finally, the
retrieved XGBoost albedo values were compared with the official NASA MODIS (MCD43, collection 6), the Global
Land Surface Satellite (GLASS), and the National Oceanic and Atmospheric Administration (NOAA) Visible
Infrared Imaging Radiometer Suite (VIIRS) SURFALB albedo products. The validation results indicated that the
proposed approach achieved much greater accuracy (RMSE = 0.052, bias = 0.002) than did the corresponding
official MODIS (RMSE = 0.087, bias = − 0.033), GLASS (RMSE = 0.089, bias = − 0.031) and VIIRS SURFALB
albedo (RMSE = 0.100, bias = − 0.032) products. The improved shortwave albedo captured the rapid temporal
changes in surface snow conditions.

1. Introduction

Snow albedo is indispensable to the intricate dynamics of the global
energy budget, climate, and environmental shifts due to its pivotal role
in regulating both regional and global energy distributions (Qu et al.,
2013, 2016; Wang et al., 2012, 2014). With its extensive spatial
coverage and rapid spatial and temporal evolution, snow exhibits pro-
nounced interannual and seasonal variations. Notably, snow typically
exhibits a significantly greater albedo than other terrestrial surfaces,
such as soil and vegetation (Ding et al., 2022a, 2022b), with freshly
fallen snow often reflecting more than 80% of incoming solar radiation
(Ding et al., 2019a, 2019b). Consequently, temporal and spatial fluc-
tuations in snow albedo are intricately linked with global climate

variations and the dynamics of regional meteorological systems
(Burakowski et al., 2015; Serreze and Barry, 2011; Wang et al., 2012).
Snow albedo, constituting a fundamental component of surface energy
equilibrium, exerts a potent positive feedback on surface temperatures
and the phenomenon of global warming, which is particularly evident at
higher latitudes (Stroeve et al., 2005;2013; Liang, 2005; Jafariser-
ajehlou et al., 2020). Therefore, achieving high precision in the retrieval
of snow albedo holds significant utility in meeting diverse user re-
quirements, encompassing the global energy equilibrium, climate vari-
ability, and hydrological processes (Qu et al., 2015; Zhang et al., 2022).

Currently, a multitude of surface albedo products with diverse tem-
poral and spatial resolutions have been disseminated globally and
extensively utilized within the realm of remote sensing (Zhang et al.,
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2022). Researchers have increasingly focused on enhancing and vali-
dating land surface albedo (LSA) products, especially for snow albedo
(Jia et al., 2022, 2023; Lin et al., 2018; Lu et al., 2021; Wu et al., 2016).
The validation accuracy of surface albedo products in both snow-free
and snow-covered regions is summarized in Table 1. These products
exhibit consistent systematic underestimations in snow-covered areas,
necessitating further enhancement in snow albedo accuracy compared
to that for snow-free regions. Notable products such as the MODerate
Resolution Imaging Spectroradiometer (MODIS) (Corbea-Pérez et al.,
2021; Liu et al., 2017; Wang et al., 2018), Global LAnd Surface Satellite
(GLASS) (Liu et al., 2013), and Visible Infrared Imaging Radiometer
Suite (VIIRS) albedo products (Liu et al., 2017; Wang et al., 2017) are
available. Several factors contribute to the relatively poorer perfor-
mance in snow regions, primarily stemming from the challenges asso-
ciated with the bidirectional reflectance distribution function (BRDF) of
snow and albedo estimation. First, snow predominantly occurs in mid-to
high-latitude regions, where higher incidence angles pose significant
challenges for the construction of an analytical snow BRDF model and
albedo estimation, despite increased acquisition frequency at these lat-
itudes (Schaaf et al., 2011b). For instance, the operational MODIS
BRDF/albedo product is not recommended for use under large solar
geometries (i.e., solar zenith angles, SZAs, greater than or equal to 70◦
and view zenith angles, VZAs, greater than or equal to 70◦), with highly
angular scenarios typically flagged with low quality indicators (Ding
et al., 2019b). To solve this problem, Jiao et al. (2019) improved the
MODIS algorithm based on the ART model, and Ding et al. (2023) fully
verified the feasibility of the improved algorithm in retrieving snow
BRDF/Albedo/NBAR. Second, rapid weather fluctuations at high lati-
tudes hinder the comprehensive capture of rainfall and snowfall pro-
cesses, necessitating relatively high temporal satellite resolutions. In the
current albedo estimation algorithm, it is usually necessary to accu-
mulate multi-angle reflectance observations, and fit the snow BRDF
model to estimate the albedo. For example, MODIS accumulates obser-
vations under clear sky conditions within 16 days, and POLDER accu-
mulates multi-angle reflectance observations within one month. This
makes it difficult for many albedo products to capture snowfall and
snowmelt processes. Third, the issue of mixed pixels is exacerbated in
snow-covered areas, posing substantial challenges in discriminating
between clouds and snow (Hall et al., 1995). In addition, the physical
mechanism of snow mixing with other surface types is not clear, and
how other surface types affect the snow reflection characteristics in the
case of mixed pixels, such as thin snow and snow-covered forest.
Consequently, these factors frequently result in lower-quality albedo
products in snow-covered regions than in snow-free regions, despite
high-quality flagged albedo demonstrating good agreement with field
data (Stroeve et al., 2005, 2013; Wang et al., 2014; Wright et al., 2014).

Compared with the above methods, the direct estimation algorithm
directly correlates top-of-atmosphere (TOA) reflectance with the LSA
through comprehensive simulations of radiative transfer processes to
estimate snow albedo (Liang, 2001; 2003). For example, Liang (2005)
used this algorithm to retrieve the daily snow albedo from MODIS data,

indicating the feasibility of this method to estimate snow albedo. Sub-
sequent developments included the production of GLASS products from
Advanced Very High Resolution Radiometer (AVHRR) and MODIS data
(Liang et al., 2013, 2021). Further enhancements and applications have
been extended to estimating albedo from VIIRS and Landsat data (He
et al., 2018; Qu et al., 2014; Wang et al., 2017). Recently, Lin et al.
(2022) utilized a direct estimation algorithm to estimate 10 m surface
albedo from Sentinel-2 satellite observations, revealing the inadequacy
of MODIS BRDF model parameters in snow-covered areas. Typically, the
direct estimation algorithm leverages high-quality MODIS BRDF model
parameters as prior knowledge to establish the TOA reflectance and
surface broadband albedo relationship (He et al., 2018). Consequently,
researchers often restrict the use of the direct estimation algorithm to
estimate albedo solely in snow-free areas due to limitations inherent in
MODIS BRDF model parameters (Ma et al., 2022; Zhang et al., 2020).
Moreover, the current direct estimation algorithm establishes the rela-
tionship between the simulation database and TOA reflectance without
accounting for errors in the simulated albedo. The uncertainty associ-
ated with simulation data may thus propagate into the inversion albedo,
significantly constraining the enhancement of the snow BRDF/albedo
product accuracy. Consequently, there is burgeoning interest in devel-
oping novel direct estimation algorithms focused on refining albedo
accuracy in snow-covered regions.

Machine learning techniques provide practical methods for remote
sensing inversion, particularly given the complexities and challenges
associated with model intricacies and the existence of multiple optimal
solutions (Chen et al., 2021; Chen and Guestrin, 2016). The initial direct
estimation algorithm was primarily used to establish the relationship
between a simulation database and TOA reflectance. Although un-
certainties in simulation data could introduce ambiguity into inversion
outcomes, this concern has been alleviated to a large extent by the
abundance of available data. In the contemporary era, satellite obser-
vations provide vast quantities of remote sensing data, while globally
distributed ground-based radiation flux observation networks provide
continuous radiation measurements at various sites. Consequently,
machine learning algorithms are now directly employed to connect
satellite observations with global site albedo measurements, showing
significant potential for snow albedo estimation. In this study, a machine
learning algorithm (i.e, eXtreme Gradient Boosting, XGBoost) designed
to directly estimate blue-sky snow shortwave albedo utilizing MODIS
data alongside ancillary information is introduced. The methodology
incorporates reanalysis datasets to ensure sufficient snow information,
establishing a direct linkage between satellite observations and global
site albedo measurements to circumvent uncertainties associated with
simulation data. Moreover, it leverages the NASA operational MODIS
MCD43 albedo (MCD43) product as prior knowledge to enhance algo-
rithm robustness. Consequently, this approach mitigates the propaga-
tion of uncertainty across multiple stages, such as atmospheric
correction, BRDF angular modelling, simulation database usage, and
narrow-to-broadband conversion.

The structure of this paper is delineated as follows. Section 2 details

Table 1
Summary of the verification accuracy of surface albedo products in snow-covered and snow-free areas.

References Products Snow-free albedo Snow albedo

Chen et al. (2015) MISR R2 = 0.747, RSE = 0.051 R2 = 0.172, RSE = 0.265
Stroeve et al. (2005, 2013) MODIS / RMSE = 0.069, bias = − 0.05
Liu et al. (2013) GLASS RMSE = 0.030, bias = − 0.002 RMSE = 0.126, bias = 0.005
Liu et al. (2017) MODIS RMSE = 0.020, bias = − 0.004 RMSE = 0.063, bias = − 0.028

VIIRS RMSE = 0.020, bias = − 0.004 RMSE = 0.049, bias = − 0.016
Wang et al. (2017) VIIRS RMSE = 0.023, bias = 0.002 RMSE = 0.050, bias = 0.032
Wu et al. (2018) MODIS RMSE = 0.032, bias = − 0.016 RMSE = 0.054, bias = − 0.028

MuSyQ RMSE = 0.033, bias = − 0.014 RMSE = 0.054, bias = − 0.013
He et al. (2018) Landsat RMSE = 0.027, bias = − 0.012 RMSE = 0.071, bias = − 0.011
Corbea-Pérez et al. (2021) MODIS / RMSE = 0.070, bias = − 0.010

Note: Coefficient of determination (R2), residual standard error (RSE), root mean square error (RMSE).
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the diverse snow data sources, encompassing site albedo measurements,
satellite data, and ERA5-Land data. Section 3 outlines the overarching
framework of the algorithm and model training process. In Section 4, we
conduct a comprehensive analysis of the results obtained through the
proposed method, employing a range of data sources. Finally, we
address potential limitations and draw conclusions based on the primary
findings in Section 5 and Section 6.

2. Data

To estimate shortwave snow albedo using the XGBoost algorithm
with MODIS observations, we used a variety of data sources, including
collecting in situ shortwave albedo measurements on a global scale for
model training and validation, satellite data as model inputs and product
comparisons (e.g., surface variables and geolocation information), and a
reanalysis dataset (i.e., ERA5-Land) as additional model inputs. Each
type of data (i.e., in situ measurements, satellite data, and ERA5-Land
data) and the corresponding processing steps are described in the
following sections.

2.1. Ground measurements

In situ shortwave radiation measurements were collected at eight
observation networks from 2002 to 2019 to obtain sufficient shortwave
snow albedo for model training and validation. The eight observation
networks are the AmeriFlux network, the FLUXNET network, the Asia-
Flux network, the European Fluxes Database Cluster (EFDC), the Coor-
dinated Energy and Water Cycle Observations Project (CEOP) network,
the Baseline Surface Radiation Network (BSRN) network, the Pro-
gramme for Monitoring of the Greenland Ice Sheet (PROMICE), and the
Marine and Atmospheric Research (IMAU). There were some over-
lapping or spatially close sites between networks. We selected one set of
data for each site to avoid data repetition and confusion. Strict data
quality control was carefully conducted before the aggregation of in situ
shortwave albedo data. First, we removed the raw data records labeled
with a bad quality flag. Then, we checked the temporal continuity and

removed the individual sites with few continuity records. Finally, we
manually inspected and removed any unreasonable radiation values. In
total, we selected 101 sites for model training and validation. There
were 4 sites from the EFDC, 12 sites from FLUXNET, 40 sites from
AmeriFlux, 8 sites from the BSRN, 2 sites from the CEOP, 24 sites from
the PROMICE, 9 sites from the IMAU, and 2 sites from AsiaFlux. Fig. 1
shows the spatial distribution of the 101 in situ observation sites used in
this study. The white areas labeled IGBP = 15 (i.e., Snow and Ice)
represent perennial snow albedo sites, primarily located in Greenland
and Antarctica. The stations in other regions are predominantly seasonal
snow albedo sites, mainly distributed across North America and Europe.
We estimated the daily mean albedo from three hourly averages of
shortwave downwelling and upwelling irradiance centred at noon
(11:00, 12:00, and 13:00) (Jin et al., 2003; Wright et al., 2014). To
smooth the albedo variation caused by blowing wind, the addition of
fresh snow, and other disturbances, we utilized a 3-h average irradiance
around noon to calculate the daily snow albedo.

2.2. Satellite data

The satellite data used in this study are summarized in Table 2. We
collected MODIS 1 km TOA Level-1B calibrated radiance observations (i.

Fig. 1. Spatial distribution of 101 in situ sites from eight radiation observation networks.

Table 2
Summary of the satellite data used in this study.

Products Variables Resolution (spatial/
temporal)

MOD021KM,
MYD021KM

TOA reflectance of B1-B7 1 km/instant

MOD03, MYD03 VZA, SZA, RAA 1 km/instant
MOD10A1, MYD10A1 NDSI 500 m/daily
MCD43A2, MCD43A3 MODIS MCD43 albedo 500 m/daily
GLASS02A06 GLASS albedo 500 m/4-days
SURFALB VIIRS SURFALB albedo 1 km/daily
GTOPO30, MERIT Elevation, slope and

aspect
1 km/1997, 90 m/2003
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e., MOD021KM and MYD021KM) and corresponding geolocation data
(i.e., MOD03 and MYD03) from 2002 to 2019, which are available at
https://search.earthdata.nasa.gov. The MOD021KM and MYD021KM
products with a l km resolution provide the MODIS TOA reflectance
from visible to near-infrared wavelengths. The MOD03 and MYD03
products offer latitude, longitude, surface elevation and angular geom-
etry information, and the latitude and longitude information can be used
to match the in situ measurements with satellite observations. In this
study, the TOA reflectance, angle information of the seven shortwave
bands (i.e., B1-B7), and surface elevation were utilized to estimate the
blue-sky shortwave albedo in snow-covered areas. The daily MODIS
snow cover products (i.e., MOD10A1 and MYD10A1) from Collection 6
were utilized to identify snow conditions.

The MODIS, GLASS and VIIRS SURFALB albedo products have been
used to improve the global energy budget and climate change studies
and track ephemeral snowfall and snowmelt processes. The NASA
operational MODIS Collection V006 daily BRDF/Albedo products
(MCD43) at a 500 m gridded resolution provide an improved daily
temporal resolution compared with the previous 8-day MODIS Collec-
tion V005 products at a 500 m resolution, which can effectively improve
the temporal monitoring of vegetation phenology and snowmelt (Schaaf
et al., 2002; Wang et al., 2012, 2014). Therefore, the MODIS MCD43
albedo was used as prior knowledge for model training to improve the
accuracy of snow albedo estimation. The GLASS albedo products suite
includes albedo from AVHRR at 0.05◦ and from MODIS at 250 and 500
m (Liang et al., 2021). The latest version (V40) of the GLASS albedo
product was used because it has a spatial resolution of 500 m and a
temporal resolution of 4 days. The National Oceanic and Atmospheric
Administration (NOAA) VIIRS surface albedo (SURFALB) is a novel
approach for directly estimating daily blue-sky albedo from a single
directional observation and provides daily values at a 1 km spatial res-
olution (Wang et al., 2013, 2017), while the direct estimation algorithm
retrieves daily albedo from VIIRS observations by determining the
relationship between LSA and TOA reflectance. The NOAA VIIRS SUR-
FALB albedo has been validated with ground measurements (Zhou et al.,
2016), and the current retrieval errors are relatively small and are
regularly updated. This VIIRS SURFALB product is available from
https://www.star.nesdis.noaa.gov/jpss/index.php.

The GTOPO30 data were from a global digital elevation model
(DEM), which was released in 1996 with a grid spacing of 30 arc seconds
(~1 km). The elevation of the GTOPO30 data ranged from − 407 to
8752 m, and the ocean area was designated as a fill value. The resolution
and accuracy of the GTOPO30 data were not as high as those of the
multi-error-removed improved-terrain (MERIT) DEM data, but they had
global coverage, which was better than that of theMERIT DEM data. The
accuracy of the GTOPO30 data does not have a unified standard, as it
depends on the accuracy of the source data, which is generally not
greater than ±30 m. In this study, we used the multi-error-removed
improved-terrain (MERIT) DEM to fill in the missing data of the
GTOPO30 data to eliminate major error components from existing
spaceborne DEMs.

2.3. ERA5-land data

ERA5-Land is a reanalysis dataset that can offer a consistent view of
the evolution of surface variables over several decades. These reanalysis
data combine observations from all over the world with model data to
produce a global complete and consistent dataset. The ERA5-Land data
offer many variable products at the global scale, including soil, vege-
tation, snow, temperature, radiation and heat. The ERA5-Land data
cover the period from 1981 to the present at a 10 km resolution and offer
a temporal resolution of either hourly or monthly data. The temporal
and spatial resolutions of the ERA5-Land data make it very useful for all
kinds of land surface applications, such as rainfall, snowfall, flood and
drought forecasting. In this study, we used the hourly snow parameters
of ERA5-Land to capture the rapid variation in snow albedo, including

snow albedo (snw_alb), snow cover (snw_cov), snow density (snw_den),
snow depth (snw_dep), snow depth water equivalent (snw_equ), tem-
perature of the snow layer (tem_lay), snowfall and snowmelt.

3. Methods

The overall framework of the process developed in this study is
shown in Fig. 2. The procedure included three components. First, 90% of
the samples were compiled for model training and validation, and the
remaining samples were used as an independent dataset for model
evaluation. Second, the mean decrease impurity (MDI) method was used
to remove redundant variables. Finally, grid research was combined
with a random search to determine the parameters of the final model
when the variables were determined.

3.1. XGBoost algorithm

The XGBoost algorithm is a machine learning system for tree
boosting proposed by Chen and Guestrin in 2016 (Chen and Guestrin,
2016). The algorithm is an efficient implementation of a gradient
boosting framework, including efficient linear model solvers and tree
learning algorithms, supporting multiple objective functions such as
regression, classification, and ranking. The XGBoost algorithm is based
on boosting integration technology and develops a strong learner by
combining a group of weak learners with additive strategies, which has
the advantages of high speed and efficiency, outstanding performance,
support for multiple input types, and customizable functions. The Py-
thon package of the XGBoost algorithm was used to implement this
method. The main parameters that determined the structure of the
model included the number of gradient-boosted trees and the maximum
tree depth, which were adjusted using a grid search method based on
10-fold cross-validation. The training accuracy of the XGBoost algorithm
is generally the same as that of the RF algorithm, but it usually has a
more efficient running speed.

Fig. 2. Flow chart of the XGBoost algorithm used to estimate the shortwave
albedo of snow.
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3.2. Determination of model parameters

All the samples from 2002 to 2019 were compiled, and the data from
2013 to 2014 were reserved for independent validation. The samples
were randomly divided into two groups: the training dataset was used to
obtain an XGBoost model (80%), and the validation dataset was used to
select the optimal model (20%). The following variables were selected:
TOA reflectance of b1-b7, angle information (i.e., SZA, VZA, RAA),
NDSI, terrain data (i.e., elevation, slope and aspect), and snow param-
eters of the ERA5-Land data (i.e., snw_alb, snw_cov, snw_den, snw_dep,
snw_equ, tem_lay, snowfall, and snowmelt). Note that the albedo is the
integral of the BRDF over the entire hemispherical geometry. Therefore,
the TOA reflectance and angle information are essential in this process.
Numerous studies have shown that the distribution, type, and albedo
variations of snow are highly dependent on elevation (Grünewald et al.,
2014; Huang et al., 2017; Jain et al., 2009; Trujillo et al., 2012). Addi-
tionally, for high-reflectance surfaces like snow, it is necessary to
consider topographic influences (Shi and Xiao, 2022). Consequently,
terrain data is also incorporated into the estimation of snow albedo. The
snow parameters of the ERA5-Land data can be used to reflect the state
of the snow surface, such as new snow, old snow, and melting snow. The
MODIS NDSI (NDSI ≥0.1) and snow cover (snw_cov ≥10%) of the
ERA5-Land data were utilized to identify snow-covered conditions and
prevent nonsnow pixels from introducing errors (Kouki et al., 2023;
Zhang et al., 2019).

The mean decrease in impurity (MDI) index was used to select the
optimal parameters of the model to prevent the model from being too
complex, which can effectively reflect the contribution of parameters to
the model and eliminate some variables with low contribution rates.
Fig. 3 shows that the temperature of the snow layer was dominant,
followed by snow cover and DOY, and, finally, TOA reflectance-related
information. The MDI values of TOA reflectance and angle information
were low, which may be because snow recognition and conditions have
a greater essential influence on snow albedo. The variables with low
MDI values did not indicate an insufficient correlation with snow albedo
but indicated a greater correlation with the variables at the higher
rankings. There were no obvious changes in the model accuracy after
feature selection, which demonstrated that the eliminated variables
were redundant for the model construction. After feature selection, the
snow albedo can be estimated as follows:

Snow albedo= F(DOY, SZA,NDSI, elevation, slope, aspect, snw alb,
snw den, snw dep, snw equ, tem lay)

(1)

In addition, we used the MODIS albedo (i.e., BSA and WSA) as prior
knowledge to improve the accuracy of the model training.

3.3. Evaluation approaches

In this study, we proposed a machine learning algorithm for
improving the MODIS shortwave albedo product in snow-covered areas.
First, 10-fold cross-validation (CV) and independent validation samples
from two years (i.e., 2013 and 2014) were used to validate the perfor-
mance of the model. Then, several official albedo products (i.e., MODIS,
GLASS and VIIRS SURFALB) were applied for comparison with our
proposed method in terms of independent sites and spatial patterns.
Finally, we selected the root mean square error (RMSE), mean relative
error (MRE) and bias values as the quality assessment indices, which are
expressed as shown in Eqs. (2)–(4):

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(y2 − y1)2

n

√

(2)

MRE=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
y2 − y1

y1

⃒
⃒
⃒
⃒× 100% (3)

bias=
∑n

i=1(y2 − y1)
n

(4)

where y1 represents the site albedo, y2 represents the snow albedo
retrieved using the proposed method, and n represents the amount of
site albedo.

4. Results and analysis

4.1. XGBoost model training and validation

In this section, we first explore the training accuracy of the use of the
NASA MODIS MCD43 albedo as prior knowledge for estimating the new
snow shortwave albedo. Fig. 4 shows a comparison of model validation
for the XGBoost algorithm without the MODIS MCD43 albedo as prior
knowledge and for the XGBoost algorithm with the MODIS MCD43 al-
bedo as prior knowledge. The use of the XGBoost algorithm to directly
model site albedo and satellite observation data has proven feasible, as
evidenced by the algorithm’s exceptionally high training accuracy. The
predicted albedo of the XGBoost algorithmwithout the MODIS albedo as
prior knowledge was shown to be quite accurate, presenting a high
correlation coefficient (R2 = 0.932; RMSE = 0.054) and a negligible
bias. However, the predicted albedo of the XGBoost algorithm with the
MODIS albedo as prior knowledge showed a slightly greater accuracy
than the site albedo (R2 = 0.953 and RMSE = 0.044). Meanwhile, the
MRE value derived using the XGBoost algorithm with the MODIS
MCD43 albedo as prior knowledge (MRE = 5.490%) was smaller than
that of the result of the XGBoost algorithm without the MODIS MCD43
albedo as prior knowledge (MRE = 7.253%). In addition, the result of
Fig. 4a strayed from the 1:1 line since there was a lack of constraint on
the MODIS MCD43 albedo, especially at low snow albedo. The result of
Fig. 4b was more concentrated on the 1:1 line due to the constraint of the
MODIS MCD43 albedo. The model validation results indicate that at
perennial snow sites, the accuracy is relatively high even without
incorporating MODIS albedo as prior knowledge. Thus, adding MODIS
albedo does not significantly enhance model accuracy at these sites.
However, in non-pure snow regions, where surface cover types are
complex and mixed pixel issues are prominent, incorporating MODIS
albedo as prior knowledge during model training provides a strong
constraint. Consequently, the validation results show that the
improvement in model accuracy is more pronounced in non-pure snow
regions whenMODIS albedo is included as prior knowledge compared to
perennial snow sites. These results demonstrate that the MODIS MCD43
albedo performs as well as prior knowledge and can improve the accu-
racy of model training, especially at low snow albedo values.

Fig. 3. The mean decrease in impurity (MDI) results for the determination of
model parameters.
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4.2. Analysis of the influence of the main parameters

We analyzed the impact of main parameters (i.e., snow layer tem-
perature, snow cover, DOY, height, NDSI, SZA) on the training results
through density scatter plots, as shown in Fig. 5. The error source for the
temperature of the snow surface may occur at approximately 273.15 K.
At this temperature, snow begins to melt, exposing more of the nonsnow
surface, which is an unusual challenge in estimating snow albedo. The
overall bias range was within 0.2 when the temperature was less than
273.15 K. For the snow cover parameters, the overall difference was
relatively large when the snow cover was approximately 20%. Addi-
tionally, there were some large deviations, particularly when the snow
cover was approximately 100%, which may be due to the uncertainty of
the ERA5-Land product. Due to variations in the DOY, there was a large
uncertainty in the spring and autumn due to snow detection and con-
ditions during snowfall and snowmelt periods, which led to greater
deviations. The variation in snow albedo was relatively complicated,
and the overall uncertainty was greater when the surface height was
relatively low. The variation in the snow albedo was relatively small,
and the overall deviation was relatively small when the snow height was
relatively high. There was no significant difference in the range of the
NDSI, but there was a greater deviation at low NDSI. The possible reason
is that there may be greater uncertainty in snow recognition at low NDSI
values. Surprisingly, there was no obvious difference in the overall de-
viation within the entire SZA variation range, especially when the SZA
was greater than 70◦, although the MODIS MCD43 albedo products are
usually of low quality at these SZAs (Schaaf et al., 2011a). In general, the
error source of model training appeared to mainly come from snow
detection and the processes of snowfall and snowmelt. Moreover, the
model training accuracy was greater in purely snow-covered areas.

4.3. Analysis of model performance at individual sites

In this section, we assessed the performance of the proposed
approach in retrieving snow albedo compared with current albedo
products (i.e., MODIS MCD43, GLASS, and VIIRS SURFALB albedo) and
with site albedomeasurements. In the validation process, we ignored the
MODIS quality control information because theMODISMCD43 albedo is
usually low quality at high latitudes. Fig. 6 shows comparisons of the
trend and histogram results of the MODIS MCD43, GLASS, VIIRS SUR-
FALB, and albedo retrieved by the proposed XGBoost approach with the
site albedo measurements. For the sites in the Greenland region in
Fig. 6a, the current albedo products and predicted albedo had very good

agreement with the site albedo at the UPE_L site in 2014 and could very
effectively capture the process of melting at DOY = 140–250. However,
the current albedo products appeared to have more obvious un-
derestimations at DOY = 168–234 during snowfall. The XGBoost-
predicted albedo using the proposed approach appeared to solve this
underestimation problem, resulting in a higher consistency with the site
albedo than with the current albedo products. For the sites in the Ant-
arctic region shown in Fig. 6b, snow cover existed year-round, and the
variation trends of snow albedo were generally similar. These albedo
products showed high consistency compared with the site albedo at the
AWS5 site in 2013, and the albedo predicted by the proposed approach
also performed well. However, there was an obvious underestimation of
these albedo products when approaching the Southern Hemisphere in
winter at DOY = 97–107. The possible reason is that the snow stops
melting during this period, the albedo increases, and the current albedo
products do not seem to capture this phenomenon. In contrast, the al-
bedo predicted by the proposed approach captured this variation well.
In addition, our proposed approach can effectively improve the unrea-
sonable values displayed by the MODIS MCD43 albedo (i.e., DOY =

62–72) at this particular site. For the variation in seasonal snow shown
in Fig. 6c, the snow melting process occurred after snowfall at the
CA_ARB site in 2013, which caused the snow albedo to increase sud-
denly and then decrease. The albedo predicted by the proposed
approach model captured this variation well. Moreover, our proposed
approach effectively improved the underestimation of the current al-
bedo products at DOY = 1–100, especially for the VIIRS SURFALB al-
bedo. In general, the snow albedo retrieved by our proposed approach
matched quite well with the site albedo, as it also captured the rapidity
of the snowfall and snowmelt process.

Fig. 7 summarizes the results for all the sites. The MODIS MCD43,
GLASS, and VIIRS SURFALB albedo generally matched well with all of
the site albedos. The validation accuracies of the MODIS MCD43 and
GLASS albedo were comparable, and their validation results were
slightly better than that of the VIIRS SURFALB albedo, which may be
because the VIIRS SURFALB albedo product used only one satellite’s
observations and provided the daily mean values. The mean differences
between these albedo products and the site albedo were approximately
0.032, with RMSE values varying from 0.087 to 0.100 and MRE values
ranging from 10.634% to 13.203%. These results indicate that these
albedo products are significantly underestimated in snow-covered areas
compared with site albedo, especially in nonpure snow areas. This is
most likely due to the field data capturing significant understorey snow
that is missed by coarser resolution satellite-derived products. Since the

Fig. 4. Density scatterplots of model validation for the XGBoost algorithm without the MODIS MCD43 albedo as prior knowledge (a) and for the XGBoost algorithm
with the MODIS MCD43 albedo as prior knowledge (b).
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GLASS albedo directly establishes the relationship between TOA
reflectance and simulated albedo by utilizing high-quality MODIS
MCD43 BRDF/Albedo products, this product may have similar prob-
lems. Compared with those of the current satellite-derived albedo
products, the mean difference between the albedo retrieved by the
proposed XGBoost approach and the site albedo was low, with an RMSE
of approximately 0.052 and an MRE of approximately 7.527%. The

albedo predicted by the proposed XGBoost approach seemed to address
the underestimation of the current albedo products very well and
showed a greater consistency with the site albedo. In general, however,
these albedo products showed higher accuracies in areas with perma-
nent snow cover but still indicated a slight underestimation compared
with the site albedo. The current albedo products need to be further
improved in seasonal snow regions, where it is difficult to capture timely

Fig. 5. The density scatter plot showing the impact of main parameters on the training results: the temperature of the snow layer (a), snow cover (b), DOY (c), height
(d), NDSI (e), and SZA (f).

A. Ding et al. Science of Remote Sensing 10 (2024) 100163 

7 



estimates of snowfall and snowmelt processes and therefore may
represent a larger underestimation. Another possible reason is that the
MODIS MCD43 albedo is obtained using multidate clear-sky surface
reflectance values over 16 days to fit the RTLSR BRDF model, although
the date of interest is emphasized to capture the conditions on that
particular day. The proposed XGBoost method directly links TOA
reflectance to instantaneous LSA and does not require atmospheric
correction or accumulation of observations over a certain period.
Therefore, it can characterize the temporal variation in LSA better,
especially when the LSA changes rapidly. In general, these current sat-
ellite albedo products were more consistent with the retrieved albedo in
Antarctica but still slightly underestimated compared with the site

albedo, which may be due to the inability to capture surface roughness
and variability.

4.4. Analysis of spatial patterns

In this section, we compared the spatial patterns of the NASA oper-
ational MODIS MCD43 albedo, GLASS albedo, and NOAA VIIRS SUR-
FALB albedo with the retrieved albedo using the proposed XGBoost
approach in 2013 for a single day at DOY= 184 for the h17v01 tiles and
DOY = 328 for the h18v16 tiles. These two typical tiles cover the
different regions of Greenland and Antarctica. Fig. 8 shows a comparison
of the spatial distribution between the current satellite-derived albedo

Fig. 6A. Comparison of the trend and histogram results of the MODIS MCD43, GLASS, and VIIRS SURFALB products and the albedo retrieved with the proposed
approach for the site albedo at the UPE_L site in 2014.

Fig. 6b. Comparison of the trend and histogram results of the MODIS MCD43, GLASS, and VIIRS SURFALB products and the albedo retrieved with the proposed
approach for the site albedo at the AWS5 site in 2013.
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Fig. 6c. Comparison of the trend and histogram results of the MODIS MCD43, GLASS, and VIIRS SURFALB products and the albedo retrieved with the proposed
approach for the site albedo at the CA_ARB site in 2013.

Fig. 7. Comparison of all site albedo based on the MODIS MCD43 albedo (a), GLASS albedo (b), VIIRS SURFALB albedo (c) products and the albedo (d) predicted
with the proposed approach.
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products and the retrieved albedo using the proposed XGBoost approach
in 2013 at DOY = 184 for tile h17v01, Greenland. It is clear that the
retrieved XGBoost albedo was in high agreement with these other albedo
products, but there was a slight difference, especially for the VIIRS
SURFALB albedo. The VIIRS SURFALB albedo exhibited higher values at
the top of the h17v01 tile and lower values at the bottom of the h17v01
tile compared with the other albedo results. In addition, the retrieved
albedo using the proposed XGBoost approach was in better agreement
with the MODIS MCD43 albedo, which may be caused by the use of the
MODIS MCD43 albedo as prior knowledge and direct links of satellite
observations to site albedo using the XGBoost algorithm. However, the
retrieved XGBoost albedo values were slightly greater than the MODIS
MCD43 albedo values, especially at the top of tile h17v01. By comparing
Figs. 8 and 9, we can see that the spatial pattern of the h18v16 tile was
more consistent than the pattern of the h17v01 tile, which may be
caused by snow cover year round in the Antarctic region, with a smaller
overall variation in snow albedo. However, there was a larger difference
between these currently derived satellite albedo products and the
retrieved XGBoost albedo in the bottom right of the h18v16 tile, and the
VIIRS SURFALB albedo exhibited higher albedo values than any other
albedo at high latitudes in the h18v16 tile. In general, the albedo
retrieved by the proposed method was in very good agreement with the
current albedo products in this study.

5. Discussion

5.1. Model training with Terra and Aqua data

In this section, we explored the training accuracy for the Terra and
Aqua data separately for estimating snow shortwave albedo. Fig. 10
shows density scatterplots of model validation for the Terra and Aqua
data using the MODIS MCD43 albedo as prior knowledge (acknowl-
edging that the MCD43 product uses both Terra and Aqua data). The R2

value of the Terra data was approximately 0.933, and the RMSE value
was approximately 0.053 and had a negligible bias, which indicated that
the training accuracy for the Terra data showed high accuracy with site
albedo. The R2 value of the Aqua data was approximately 0.928, and the
RMSE value was approximately 0.055 and had a negligible bias, indi-
cating that the training accuracy for the Aqua data also showed high
accuracy with site albedo. Both Terra and Aqua data performed well for
model training for estimating snow shortwave albedo. The MRE value
derived from the Terra data was approximately 6.772%, which was
reduced by 0.162% compared to the result derived from the Aqua data.
The accuracy of the model training was greater than that of using the
Terra and Aqua satellites alone (i.e., Fig. 4b) when the data from the
Terra and Aqua satellites were combined. The R2 value of the Terra and
Aqua data was approximately 0.953, and the RMSE value was approx-
imately 0.044, which was much better than the results of the Terra or
Aqua data alone. There was more information when the data from the
morning Terra and afternoon Aqua satellites were combined. Moreover,
the MRE value was approximately 5.490% when the Terra and Aqua
satellite data were combined, which was reduced by 1.280% and
1.444%, respectively, compared to the results derived from the Terra
and Aqua data alone. These results demonstrate that both the Terra data
performed slightly better than the Aqua data for estimating snow
shortwave albedo. The accuracy of model training was greater when
both the Terra and Aqua satellites were used than when the Terra and
Aqua satellites were used alone. Additionally, the MODIS albedo pro-
duced by full inversion and magnitude inversion algorithms was not
distinguished in the model training. This is because, in high-latitude
regions, the MODIS albedo product mainly comes from the magnitude
inversion algorithm, accounting for 74.60% (Ding et al., 2023). There-
fore, the MODIS albedo product is divided into sets associated with the
full inversion and magnitude inversion algorithms, which have a
negligible impact on the overall training results.

Fig. 8. Comparison of the spatial distributions of the MODIS MCD43 albedo
(a), GLASS albedo (b), VIIRS SURFALB albedo (c) and XGBoost albedo (d)
retrieved in this study using the proposed approach on DOY = 184 in the
h17v01 tile.

Fig. 9. Comparison of spatial distribution between the MODIS MCD43 albedo
(a), GLASS albedo (b), VIIRS SURFALB albedo (c) and albedo (d) retrieved in
this study using the proposed approach on DOY = 328 in the h18v16 tile.
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5.2. Uncertainty of snow data

The in situ measurements of LSA were calculated as the ratio of total
upwards to total downwards radiation, which was measured by an
automatic weather station (AWS). For the field measurements, the in-
strument has a spectral range of 300–2500 nm in the PROMICE network
(Fausto et al., 2021), which has a measurement uncertainty of 5% for
daily totals. The IMAU network is equipped with Kipp and Zonen CNR1
or CNR4 radiometers in Antarctica. The CNR1 radiometer has a spectral
range of 305–2800 nm, and the CNR4 radiometer has a spectral range of
300–2800 nm. The measurement uncertainty of these two radiometers is
approximately 10% (Jakobs et al., 2020). The AmeriFlux and FLUXNET
networks have a spectral range of 280–2800 nm, and data are recorded
every 30 min. The BSRN network has a spectral range of 280–3000 nm,
which is released at 3- and 1-min intervals (Zhang et al., 2019). The
measurement uncertainty of these networks is approximately 10%. The
AWS uses a single-frequency global positioning system (GPS) receiver to
measure the position and elevation of each station. Some sites on the ice
surface have been repositioned during maintenance visits over distances
larger than several tens of metres. The location change affects the ra-
diation measured since the stations have moved away from the opening
crevasses. In addition, the footprints of the tower measurements were
calculated based on the instrument height and effective field of view
(Román et al., 2013), and the tower height was generally used to
approximate the instrument height. The tower heights of different sites
were usually different, which implied that they had different spatial
representations. We carried out strict quality control for various data
sources, and the measurement uncertainty of the instrument, the spec-
tral range, and the spatial representations of the site data were also
acknowledged as sources of uncertainty in the model inversion.

5.3. Analysis of uncertainties in snow albedo estimation

Quantifying and understanding uncertainties in the estimation of
snow shortwave albedo is crucial. This paper discusses data uncertainty
and model uncertainty and analyzes their impact on retrieval results.
The inherent uncertainties in the training data are one of the main
sources of uncertainty in the model’s retrieval results. Therefore, cross-
validation and uncertainty analysis methods are employed to analyze
data uncertainties. By using these methods, we can clearly understand
the range of uncertainties in the training data and consider this factor in
subsequent model evaluations. Model uncertainty primarily reflects how
uncertainties in the training data affect retrieval results. On this basis,

we further quantify model uncertainty. Using uncertainty propagation
formulas, we transfer the uncertainties from the training data to the
model’s retrieval results, calculating the uncertainty for each retrieval
result. This analysis allows us to quantify and correct these impacts,
thereby improving the model’s reliability (Wu et al., 2019, 2023).

In the estimation of snow shortwave albedo, the uncertainties at
different temporal and spatial scales are crucial for snow albedo. We
discussed the uncertainties analysis in different periods of data, such as
seasonal and inter-annual variations of uncertainty, and identified the
uncertainty patterns in long-term monitoring (Du et al., 2023; Wen
et al., 2023). For different geographic regions, we analyzed spatial un-
certainties, identified the characteristics of uncertainties in different
areas, and explored possible causes. The above uncertainty analysis can
further enhance the robustness of the method. Specific improvement
measures include: (1) Strengthening data processing methods: by
introducing more uncertainty quantification methods, improve the
reliability and stability of training data. (2) Optimizing model design:
considering uncertainty propagation in model design enhances the
model’s adaptability to data uncertainty and reduces the impact of un-
certainty on retrieval results. (3) Continuous evaluation: establishing a
long-term evaluation mechanism, regularly assessing and correcting
uncertainties, and improving the long-term application value of the
model. We believe these improvements will make the method more
reliable and assist in more accurately interpreting and applying retrieval
data. These uncertainty analyses provide important directions for future
research. In future studies, we will further study and quantify un-
certainties to improve the accuracy and applicability of the method.

6. Conclusion

In this study, we proposed a machine learning algorithm for
retrieving snow shortwave albedo from MODIS data and other ancillary
information. This approach used NASA operational MODIS MCD43 al-
bedo data as prior knowledge and then directly linked satellite obser-
vations to global site albedo measurements via the XGBoost algorithm.
Validation analyses showed that our proposed approach improved the
estimation of shortwave albedo and was quite accurate, with a high
correlation coefficient (R2 = 0.938) and a negligible bias between the
predicted XGBoost albedo and the tower site albedo. TheMODIS MCD43
albedo used as prior knowledge performed quite well in terms of
improving the accuracy of model validation, especially at low snow al-
bedo amounts. Therefore, the proposed XGBoost approach is effective at
estimating snow shortwave albedo. In addition, both the Terra and Aqua

Fig. 10. Density scatterplots of model validation for the Terra (a) and Aqua (b) data using the MODIS MCD43 albedo product (which uses both Terra and Aqua) as
prior knowledge.
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data performed well in model training for estimating snow shortwave
albedo, with the Terra data performing slightly better than the Aqua
data for estimating snow shortwave albedo. However, the accuracy of
the model validation was greater when the Terra and Aqua data were
combined than when the Terra and Aqua data were used alone.

In summary, this work presents a promising approach using the
XGBoost algorithm to estimate snow shortwave albedo, and we
demonstrate the ability of this approach to retrieve the intrinsic albedo.
Therefore, this novel direct estimation algorithm, which utilizes both
site data and prior knowledge from the current MODIS MCD43 albedo
products, has the potential to estimate improved snow shortwave albedo
for many applications, e.g., energy budget and climate change studies in
snow-covered regions.
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validation of remote sensing products. IEEE Trans. Geosci. Rem. Sens. 57 (12),
9740–9755.

Zhang, H., Zhang, F., Zhang, G., Che, T., Yan, W., Ye, M., Ma, N., 2019. Ground-based
evaluation of MODIS snow cover product V6 across China: implications for the
selection of NDSI threshold. Sci. Total Environ. 651, 2712–2726.

Zhang, X., Jiao, Z., Dong, Y., He, T., Ding, A., Yin, S., Zhang, H., Cui, L., Chang, Y.,
Guo, J., Xie, R., 2020. Development of the direct-estimation albedo algorithm for
snow-free Landsat TM albedo retrievals using field flux measurements. IEEE Trans.
Geosci. Rem. Sens. 58, 1550–1567. https://doi.org/10.1109/TGRS.2019.2946598.

Zhang, X., Jiao, Z., Zhao, C., Qu, Y., Liu, Q., Zhang, H., Tong, Y., Wang, C., Li, S., Guo, J.,
Zhu, Z., Yin, S., Cui, L., 2022. Review of land surface albedo: variance
characteristics, climate effect and management strategy. Rem. Sens. 14 (6), 1382.
https://doi.org/10.3390/rs14061382.

Zhou, Y., Wang, D., Liang, S., Yu, Y., He, T., 2016. Assessment of the Suomi NPP VIIRS
land surface albedo data using station measurements and high-resolution albedo
maps. Rem. Sens. 8, 137. https://doi.org/10.3390/rs8020137.

A. Ding et al. Science of Remote Sensing 10 (2024) 100163 

13 

http://refhub.elsevier.com/S2666-0172(24)00047-6/sref33
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref33
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref33
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref34
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref34
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref34
https://doi.org/10.1109/TGRS.2022.3149762
https://doi.org/10.3390/rs70100990
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref37
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref37
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref38
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref38
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref38
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref39
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref39
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref39
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref39
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref40
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref40
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref40
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref41
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref41
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref41
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref41
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref41
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref42
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref42
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref42
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref43
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref43
https://doi.org/10.1109/TGRS.2021.3098607
https://doi.org/10.1109/TGRS.2021.3098607
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref45
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref45
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref45
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref46
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref46
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref47
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref47
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref47
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref48
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref48
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref48
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref49
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref49
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref50
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref50
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref50
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref50
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref51
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref51
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref51
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref51
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref52
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref52
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref52
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref53
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref53
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref53
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref54
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref54
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref54
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref54
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref55
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref55
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref55
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref56
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref56
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref56
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref56
https://doi.org/10.3390/rs10122045
https://doi.org/10.3390/rs10122045
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref58
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref58
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref58
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref58
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref59
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref59
http://refhub.elsevier.com/S2666-0172(24)00047-6/sref59
https://doi.org/10.1109/TGRS.2019.2946598
https://doi.org/10.3390/rs14061382
https://doi.org/10.3390/rs8020137

	Improved estimation of daily blue-sky snow shortwave albedo from MODIS data and reanalysis information
	1 Introduction
	2 Data
	2.1 Ground measurements
	2.2 Satellite data
	2.3 ERA5-land data

	3 Methods
	3.1 XGBoost algorithm
	3.2 Determination of model parameters
	3.3 Evaluation approaches

	4 Results and analysis
	4.1 XGBoost model training and validation
	4.2 Analysis of the influence of the main parameters
	4.3 Analysis of model performance at individual sites
	4.4 Analysis of spatial patterns

	5 Discussion
	5.1 Model training with Terra and Aqua data
	5.2 Uncertainty of snow data
	5.3 Analysis of uncertainties in snow albedo estimation

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


